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A technology must be developed to automatically identify extreme stress states of children who cannot properly express their
emotions when recognizing dangerous situations, which threaten the safety of children, in real time. ,is study presents a stress-
state identificationmodel for children based onmachine learning, biometric data, a smart band for collecting biometric data, and a
mobile application for monitoring the stress state of the child classified. In addition, through an experiment comparing a dataset
using only voice data and a dataset using both voice and heart rate data, we aimed to verify the effectiveness of the combination of
the two biosignal datasets. As a result of the experiment, the SVM model showed the highest performance with an accuracy of
88.53% for the dataset using both voice data and heart rate data. ,e results of this study presented strong implications for the
possibility of automating the stress-state identification of a child, and it is expected that the developed method can be used to take
preventive measures for dangerous situations to children.

1. Introduction

Owing to the increasing frequency of incidents and accidents
affecting children, social attention to the safety of children
has increased [1–3]. Accordingly, there has been an in-
creasing demand for technologies that can determine the
state of a child in real time. In addition, because children
have limited communication skills when they are under
stress, they are not able to discern the type of situation they
are facing and are therefore severely affected by stress.
Protectors are also unaware of how children feel, and this
leads to children becoming unknowingly stressed. It is
therefore imperative that children receive ongoing care and
protection from their protectors. Such risky situations are
revealed only after the event, thereby increasing the levels of
anxiety among their protectors.

,e instant recognition of dangerous situations that affect
children is required in order for their protectors to respond to
such situations quickly. Closed-circuit televisions (CCTVs)
have been widely utilized to detect situations that are dan-
gerous for children; however, it is practically difficult for

protectors of children to constantly monitor CCTV videos to
identify dangerous situations instantly. Moreover, CCTVs
have limitations because these devices transmit and receive
image signals based on several people instead of individuals,
and violent incidents and accidents do occur in the blind spots
of CCTVs. For this reason, a solution for identifying the
extreme stress state of a child in real time should be developed
to detect dangerous situations more rapidly.

In addition, a new technology named emotional artificial
intelligence has emerged with recent advent of the era of the
fourth industrial revolution. In particular, with convergence
of cognitive science and information and communications
technologies, the rapid development of artificial intelligence-
based emotional computing technology has allowed the
analysis and interpretation of human emotions. In this
regard, the importance of technologies on human computer
interaction (HCI) is increasing, and along with development
and progress of research on HCI, the research focus has
shifted from investigation of computer responses from di-
rect user inputs to computer responses based on the emo-
tional inference or user intention [4].
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Biometric data have been utilized in previous studies to
determine the stress states of individuals. To evaluate the
stress levels of potential targets, Bakker et al. [5], Healey
and Picard [6], and Jung and Yoon [7] collected biometric
signals from workers, drivers, and elderly people, respec-
tively. Setz et al. [8], Melillo et al. [9], and Kurniawan et al.
[10] conducted tests involving the learning capabilities of
research participants in experimental environments and
identified the stress states of these participants. However,
such existing studies focused on only reactive stress-state
identification and failed to consider the appropriate factors
for children with insufficient linguistic and recognition
abilities.

In this regard, this study presents a stress-state iden-
tification model for children based on both voice and heart
rate (HR) data. Voice data, such as the laughing and crying
sounds of a child, are important factors for determining the
stress state of a child who has difficulty in expressing his or
her emotions [11, 12]. In addition, HR data are biometric
data that are most frequently used for stress identification
and can be used to recognize a child’s state of increased
tension [4, 9]. Both sets of data are considered to be ap-
propriate for the stress-state identification of a child be-
cause such data can be used to identify the stress state of
targets regardless of their linguistic and recognition
abilities.

For the stress-state identification of a child, machine-
learning models such as Näıve Bayes (NB) classification,
decision trees (DTs), and support vector machines (SVMs)
are used. ,ese models are known as representative clas-
sification algorithms and have been widely applied in various
fields, including user prediction based on multimodal data
learning and automatic document classification [13–16]. In
this study, classification models were used to generate a
stress-state classification model based on voice and HR data.
,e developed model classifies the stress state of a child
when it receives new data input.

Furthermore, this study presents a system for obtaining
the biometric data of a child, identifying the stress state of
the child based on the collected data, and monitoring the
identification result. ,e proposed system includes the
following three elements: a smart band, the child’s stress-
state identification model proposed in this study, and a
mobile application (app). First, the smart band is equipped
with voice and HR sensors to collect a child’s biometric data.
,e child’s stress-state identification model proposed in this
study calculates biometric data that are collected to identify
the stress state of a child. Finally, the mobile app facilitates
the monitoring of the identification result in real time. ,e
proposed system enables protectors of children to recognize
and respond to problematic situations for their children in
real time.

,e remainder of this paper is organized as follows.
Section 2 describes the related studies on stress-state
identification using biosignal information, and Section 3
presents a model and framework for stress-state identifi-
cation of a child. Section 4 describes the system application
and performance evaluation. Finally, Section 5 presents the
conclusions with suggestions for future research directions.

2. Related Research

,is section introduces existing stress-state identification
and analysis methods that are based on biometric data.
Table 1 summarizes these methods.

,e stress state of targets was identified in previous
studies using various combinations of biometric data,
including HRs, galvanic skin response (GSR), electro-
cardiograms (ECG), electromyography (EMG), and
electroencephalography (EEG). Among these, HR data
have been used for stress-state identification the most
frequently in combination with other types of data, be-
cause HR changes can be caused by conditions other than
stress [17]. Sun et al. [18] identified the stress state of
target subjects who performed physical actions based on
the HR, GSR, and accelerometer data. However, accurate
GSR data were not obtained from subjects who performed
numerous actions because the collection of these data
depended more on movements than on other biometric
signals.

Voice data, such as the crying sounds of children, are
important indicators of emotional expressions [19]. Abou-
Abbas et al. [20], Rosales-Pérez et al. [21], and Ruvolo and
Movellan [11] proposed models for detecting voice data,
including crying sounds of children. In particular, the model
developed by Ruvolo and Movellan [11] is similar to the
model proposed in this study in that the former can detect
crying sounds of children using sounds generated from daily
activities in kindergartens.

Moreover, Kurniawan et al. [10] conducted an experi-
ment to identify the stress states of subjects by analyzing
words that they said based on voice data. Setz et al. [8] and
Melillo et al. [9] conducted a test involving the learning
capabilities of subjects in an experimental environment that
was established.

As indicated earlier, conditions in previous studies are
unlikely to be applied to cases of children who have in-
sufficient linguistic and recognition abilities. ,is study is
different from existing studies using voice data because those
studies aimed to predict the presence of a disease from a
medical perspective or develop robots from an educational
perspective rather than recognize dangerous situations for
children.

Hence, in this study, both voice and HR data appropriate
for children were applied by considering the limitations of
previous studies. In addition, a system for detecting dan-
gerous situations for children is proposed by applying the
child’s stress-state identification model based on these
biometric data.

3. Child Stress-State Identification Model

,is section presents the child stress-state identification
model developed in this study. Section 3.1 defines the stress
status of a child that was mainly discussed in this study.
Section 3.2 describes the overall framework of this model.
Section 3.3 details the data representation and preprocessing
processes. Finally, Section 3.4 introduces the proposed
model, which is based on machine learning.
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3.1. Stress-State Definition. Figure 1 graphically defines the
stress state of a child according to the combination of voice
data and HR data. Level 1 and Level 3 indicate general
situations that children can face, whereas Level 2 and Level 4
indicate other exceptional situations that can occur.

Level 1 refers to a condition defined as stress, in which a
child cries and shows a high HR. On the other hand, Level 3
refers to a condition defined as nonstress, in which a child
does not cry and shows a low HR. A situation in which a
child cries in stress is an example of Level 1, and a situation
in which a child is at rest is an example of Level 3.

On the contrary, Level 2 refers to a condition in which
the crying sound of a child is recognized despite receiving a
low HR state. For example, a target child for research does
not cry, while another child next to him or her cries.

Level 4 refers to a condition in which a child shows a
high HR but does not cry. For example, a child shows a high
HR because of physical activities such as running. Condi-
tions that are associated with Level 2 and Level 4 are also
defined as nonstress conditions, as is the case with Level 3.

,at is, only Level 1 refers to a condition in which a child
is stressed, whereas Levels 2, 3, and 4 refer to conditions in
which the child is not stressed.

3.2. Framework. Figure 2 shows the framework of the child
stress-state identification model proposed in this study.
First, input data including voice and HR data are used as
training data through preprocessing, and the training data
are used to generate the stress-state identification model for
children.

,e generated model is applied to determine the stress
state of the child based on new tasting data instead of
existing training data. When experimental data are input in
the model, the state of the child is determined as stress or
nonstress. For experimental data, the input data of voice and
HR signals are collected from a smart band, which is a
wearable device worn by Child A and used as experimental
data through preprocessing.

,e identification result is transferred to a mobile app
installed on the smartphone of the child’s protector in real
time. When the stress state of the child is detected from the
smart band, the app instantly sends a notification to the
protector about the state of the child.

3.3. Data Representation and Preprocessing. In this study, N
instance(s) and T � V1, V2, V3, . . . , VN  are used. ,e el-
ements of T have independent identical distribution. Each
instance contains an HR datum and an M voice datum or
data, and the ith instance is represented as an input vector
(Vi � vi0, vi1, . . . , viM , i � 1, 2, . . . , N). ,e jth set of
properties of an input vector in T is represented as
Uj � v1j, v2, . . . , vNj , j � 0, 1, . . . , M. It is assumed that
Uj and Uj � v1j′ , v2j′ , . . . , vNj′ , j≠ j′, j′ � 0, 1, . . . , M

are independent of each other.
Figure 3 shows the process of generating an input

vector graphically. Specifically, the number of beats per
minute is used as HR data, which are calculated using an
R-R interval between two consecutive heart beats. Here,
the peak of the first heart beat is defined as R1, and the
peak of the second heart beat as R2. When the time interval
between R1 and R2 is 60 seconds, beats per minute
(hi, i � 1, 2, . . . , N) for the ith input vector in the case of
occurrence of heart beats are calculated using (1) [22].
Consequently, hi is set as the first element
(vi0, i � 1, 2, . . . , N) of the ith input vector through nor-
malization according to

hi �
60

R2 − R1
, (1)

vi0 �
hi − min hi

′( 

max hi
′(  − min hi

′( 
. (2)

Here, min(hi′), i′ � 1, 2, . . . , N refers to the minimum
value at hi, and max(hi′), i′ � 1, 2, . . . , N refers to the
maximum value at hi.

Table 1: Summary of related studies.

Objects (topics) Signals used Analysis methodologies References
Automatic identification of stress causes of employees GSR Adaptive windowing Bakker et al. [5]

Detecting real-world driving stress HR, EMG,
respiration Continuous correlations Healey and Picard

[6]
Multilevel assessment model for monitoring elder’s health
condition HR, EEG, ECG SVM, DT, expectation

maximization Jung and Yoon [7]

Personal health system for detecting stress GSR Latent Dirichlet allocation,
SVM Setz et al. [8]

Stress elicitation by examination HR Latent Dirichlet allocation Melillo et al. [9]
Voice, GSR DT, SVM, K-means Kurniawan et al. [10]

Activity-aware mental stress detection (sitting, standing,
and walking)

HR, GSR,
accelerometer DT, SVM, Bayes network Sun et al. [18]

Automatic detection of the expiratory and inspiratory
phases in newborn cry signal Voice Hidden Markov model Abou-Abbas et al.

[20]
Automatic classification of infant crying for early disease
detection Voice Genetic selection of a fuzzy

model
Rosales-Pérez et al.

[21]

Automatic cry detection in early childhood Voice Gentle-boost Ruvolo and
Movellan [11]
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Voice data are feature values of sounds extracted
through a series of processes in a sound feature extractor. A
sound feature value is obtained through the process of
numerically representing sound features through Fourier
transformation. When a sound is input, downsampling and
preprocessing for windowing are performed. Downsampling
is performed to reduce the time required for the extraction of
output data, and windowing is performed to prevent sound
features from changing discontinuously and rapidly [23].

Finally, sound feature values are normalized to extract
ultimate sound feature values.

Sound feature values were extracted using a publicly
available sound feature extractor library. Table 2 lists the
properties of representative values extracted by the sound
feature extractor library used in a study conducted byMcKay
[24, 25].

In addition, the result of identifying the stress state of a
child based on the proposed model and an input vector
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Figure 2: ,e framework of the child stress-state identification model.
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Figure 1: Definition of the stress state of a child according to the combination of voice data and HR data.
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indicates that Ci, i � 1, 2, . . . , N is classified into S, indi-
cating stress, and S, indicating nonstress, as shown in

Ci �
S, if Vi is in the “Strees” state,

S, otherwise.
 (3)

3.4. Stress-State IdentificationModeling. ,e stress state of a
child was identified by applying representative classification
models based onmachine learning, such as NB classification,
a DT, and an SVM.

,e NB classification model is a type of probabilistic
classifiers in which feature values are assumed to be inde-
pendent, Bayes’ theorem is applied for classification into the
maximum probability category, and the model has been
investigated across a wide range of fields. ,e NB classifi-
cation model can be effectively applied to classification of
documents or categories, such as spam mail classification
[26].

,e DT classification model illustrates decision rules
using diagrams, classifies the target group into several small
groups, and makes prediction based on these small groups
[27]. ,e DT classification model is constructed by estab-
lishing split criteria, stopping rules, and evaluation criteria
for the purpose of analysis and data structure. ,en, the tree
undergoes a pruning process to remove improper branches
that may increase the classification error. Finally, the success

Table 2: Representative sound features.

No Features
1 Power spectrum
2 Magnitude spectrum
3 Magnitude spectrum peaks
4 Spectral variability
5 Spectral centroid
6 Partial-based spectral centroid
7 Partial-based spectral smoothness
8 Compactness
9 Spectral roll-off point
10 Spectral flux
11 Partial-based spectral flux
12 Method of method
13 Area method of moments
14 Mel frequency cepstral of coefficient (MFCC)
15 Area method of moments of MFCCs
16 Zero crossings
17 Root mean square
18 Relative difference function
19 Fraction of low-energy frames
20 Linear predictive coding
21 Beat histogram
22 Strongest beat
23 Beat sum
24 Strength of strongest beat
25 Strongest frequency via zero crossings
26 Strongest frequency via spectral centroid
27 Strongest frequency via FFT maximum

Input data
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feature extraction

Output vector

Heart rate feature

, ,Vi0 Vi1 Vi2 Vi3 Vim CiVi(m–1) Vi(m–2)
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Feature extraction

Normalization

Normalization
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Figure 3: ,e process of generating an input vector graphically.
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of the DT is evaluated through cross-validation analysis
using the verification data of several diagrams. ,e DT
classification model is used as a method to increase the
accuracy of future prediction analysis and to describe the
analysis process [28].

,e SVM model is a supervised learning model for
pattern recognition and is mainly used for classification
problems. ,e distance between the decision boundary and
the closest data from the training data is called margin, and
the data located at the closest distance to the decision
boundary is called the support vector [29]. While using the
SVM model, if the two classes to be classified have a sep-
arating plane, the classes can be separated by introducing a
kernel function. Based on this, Vapnik proposed a classi-
fication method using a nonlinear kernel [30]. If the training
data provided in a specific space is mapped to a higher
dimensional space using a kernel function, a hyperplane
with a maximum margin can be obtained based on the
characteristics of the data. In other words, with datasets, the
decision boundary is nonlinear; however, in a specific high-
dimensional space after mapping, linear separation becomes
possible.

,e NB classification method, which is the first classi-
fication model applied in this study, calculates the proba-
bility (P(Ci � S|Vi), i � 1, 2, . . . , N) that Vi, i � 1, 2, . . . , N

is in the S condition using (4). It calculates the probability
(P(Ci � S|Vi), i � 1, 2, . . . , N) that Vi, i � 1, 2, . . . , N is in
the S condition based on 1 − P(Ci � S|Vi).

P Ci � S|Vi(  �
P Ci(  · P vi0, vi1, . . . , viM|Ci( 

P Vi( 
∝ P Ci′j|Ci′ .

(4)

HR and voice data, which have continuous values, are
utilized through supervised discretization [31]. Moreover, as
the independent status of elements of Uj is assumed,
P(vi0, vi1, . . . , viM|Ci) can be expressed as 

M
j�0 P

(v
ij
� |Ci′), i′ � 1, 2, . . . , N, j � 0, 1, . . . , M. ,e NB classifica-

tion method determines the S condition when
P(Ci � S|Vi)>P(Ci � S|Vi) is observed in Vi, i �

1, 2, . . . , N based on the calculated probability. ,e opposite
case is classified as the S condition for decision making.

,e DTmethod, which is the second classification model
applied in this study, selects properties of an input vector
that has the greatest information gain as a decision node and
keeps pruning until the ultimate decision value is classified
[32]. ,e information gain is calculated based on entropy,
which is used to calculate the complexity of S or S in T. ,e
entropy is minimized when only either S or S is determined.
In other words, it has the minimum value when only one
condition is determined, i.e., the condition in which a child
is stressed or the condition in which a child is not stressed.

,e properties of an input vector that serves as a decision
node are expressed as Uj∗ � v1j∗ , v2j∗ , . . . , vNj∗ . To es-
tablish a split point in Uj∗ , which has continuous elements,
the mean of two consecutive elements in Uj∗ is calculated.
Subsequently, the entropy of the mean of N − 1 is calculated,

and a split point at the lowest entropy is represented as
Split(v∗). In this case, the DTclassifies decision values based
on vij < Split(v∗) and vij > Split(v∗) [31].

,e SVMmethod, which is the third classification model
applied in this study, classifies the stress status of a child by
identifying a decision boundary that maximizes the margin
between an input vector belonging to S and an input vector
belonging to S in a vector space. Equation (5) indicates an
objective function.

Min
1
2
w

2
+ λ

N

i�1
ξi,

s.t. y w
T

· Vi + b  − 1 + ξi ≥ 0, ξi ≥ 0,



N

i�0
ξi ≤ λ, i � 1, 2, . . . , N.

(5)

Here, y refers to the stress state of a child, and it has the
value of 1 in S and that of -1 in S. w denotes a normal vector
vertical to a decision boundary. A soft margin method is
applied, and the slack variable is placed on the decision
boundary to consider the noise of data that cannot be
classified based on only S and S. ξi refers to the size of an
error allowed in the model, and λ refers to a variable that
controls the effects of a decision boundary.

When a discriminant ((wT · Vi + b) − 1 + ξ � 0)) is
generated through the application of training data, the SVM
classifies the stress state of a child by determining whether an
input vector belongs to ( wT · Vi + b) − 1 + ξ > 0 or
(wT · Vi + b) − 1 + ξ < 0.

4. System Implementation and
Experiment Results

4.1. System Implementation. In this section, data transfer
structure according to terminals is described. Data transfer is
classified as data transfer performed between a smart band
and a mobile app, and that performed between a mobile app
and a server.

A smart band is a customized band for children and is
equipped with voice and HR sensors. Biometric data of
children are collected through these sensors. With respect to
the data collected, the status of the smart band connection
and the data collection status can be checked using a mobile
app. ,e collected data is preprocessed to generate an input
vector that is transferred to a server and stored in a database
(DB). ,e mobile phone should include a communication
module for facilitating data transfer with a smart band agent,
and one for facilitating data reception from the server. ,at
is, an agent refers to a smart band measurement device
including measurement sensors, and a DB refers to a server
in which biometric data are stored. Communication mod-
ules including BLE Manager and HTTP Client are installed
on the mobile phone.

,e agent transfers data to BLE Manager of the com-
munication modules using Bluetooth according to the ISO/
IEEE 11073 Personal Health Data (PHD) Standards. HTTP
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Client exchanges information with the mobile app and
server using HTTP methods for JavaScript Object Notation
(JSON) and images (JPG/PNG). ,e entire resources on the
web are represented as URI to connect these resources with
each other, and both HTTPmethods (e.g., GET, POST, PUT,
and DELETE) and URL are used to transfer data [33, 34].

Figure 4 shows a flowchart for biometric data transfer
from a smart band to a web server. ,is chart shows three
stages. In the first stage, biometric data measured in a smart
band are transferred to a mobile app over a Bluetooth
connection. In the second stage, a user checks measurement
values on the mobile app and transfers them to a web server
via the Internet. In the third stage, the user can search
biometric data stored in the DB and monitor them on the
screen of a mobile app.

In the first stage in Figure 5, the user selects a smart band
that he or she is willing to connect with a mobile app. ,e
smart band selected is registered for Bluetooth pairing. After
the Bluetooth pairing process is complete, the smart band is
connected to the mobile app and transfers biometric data
measured to the app.

In the second stage, biometric data transferred from the
smart band are processed to be displayed on the screen of the
mobile app for the user. ,ese data are temporarily stored in
a local DB of the mobile app and transferred to a web server.
Biometric data transferred to the web server are stored in the
DB of the server, and the connection is terminated.

In the third stage, biometric data that are stored in the
server can be searched, checked, and monitored on the
mobile app.

When the app is executed on the mobile phone, a sign-in
request screen is displayed. When an automatic sign-in
function is checked on the sign-in screen, sign-in infor-
mation is stored in the app, and the sign-in screen is omitted
from that time. When sign-in verification is complete, a
smart band list screen is displayed. ,e user selects a smart
band that he or she is willing to use, checks the Bluetooth
pairing status for this device, and waits for Bluetooth pairing
registration. Subsequently, the Bluetooth service for con-
nection with this device is declared and initialized. When the
Bluetooth service is declared, the smart band is searched
around the mobile phone and connects when it is in close
proximity. Measurement values are received, transferred to a
server, and provided in the form of daily and monthly
reports.

Figure 6 shows the entire processes of the app. First, the
sign-in process is executed, and sign-in information is
stored. As shown in Figure 7, an onBind() Callback method
should be generated to receive information from the smart
band. ,is method returns an IBinder object, which defines
the interface in which clients can interact with services. As
shown in Figure 8, it also executes an initialize() function to
set the Bluetooth connection.

,e initialize() function processes the initial Bluetooth
setting and returns a value obtained through such process to
a Boolean. Subsequently, the Bluetooth service is loaded
from a system service and stored in BluetoothManager. In
addition, the basic adapter of the device is accessed by
getAdapter() from BluetoothManager and stored in

BluetoothAdapter. Using these processes, initial tasks for
using the Bluetooth function are completed.

With respect to the null check in BluetoothAdapter,
finish() or termination is implemented immediately when
the mobile phone of the user does not support the Bluetooth
function or when the Bluetooth function is not activated.
Basically, when Bluetooth is not supported, getAdapter()
returns null and leads to null in BluetoothAdapter. When
BluetoothAdapter.isEnabled() is false, this means that the
Bluetooth function is turned off. To search surrounding
Bluetooth devices, a BluetoothLeScanner object is generated.

As shown in Figure 9, a setFilterDeviceName() function
searches surrounding Bluetooth devices based on the name
of the Bluetooth device to be used and checks the status of
this device registered for Bluetooth pairing. ,e name of the
device to be used is transferred using filterDeviceName, and
surrounding Bluetooth devices are searched based on the
name transferred through start_Scan(). Using getPair-
edCheck(), the Bluetooth device that is matched is examined
to determine whether it is registered for Bluetooth pairing.

,e connect() function requests a connection with a
Bluetooth device using the MAC address of the device. ,e
connection result is returned to a Boolean. First, it confirms
the declared status of BluetoothAdapter. When it is not
declared, it returns false. When declaration is confirmed,
information on the Bluetooth device to be connected based
on its MAC address is loaded. When this information is not
loaded, the function also returns false. When the connection
is fully confirmed, it examines details of the GATT server
connection with the selected Bluetooth device and data
transfer and reception and connects the Bluetooth device.

An onCharacteristicChanged() function receives infor-
mation from the connected Bluetooth device and processes
it to be used. It generates and sends a broadcastUpdate()
function to the activity screen of the app. It also stores such
information in a remote DB.

Figure 10 shows a screen of the developed app on which
a protector can monitor the stress state of the target child
over time. ,is app presents the stress state of a child in real
time and according to time zones. It serves as a medium for
real-time monitoring, which enables users to apply it ha-
bitually and constantly [35, 36].

Specifically, it is operated in a one-to-one connection
with the smart band. It displays information that is trans-
ferred from the smart band in real time, along with previous
information stored in DBs, on a screen. When the stress
status of the child is identified, it instantly sends a notifi-
cation with that status to his or her protector to inform the
protector about the situation.

4.2. Experiment Results

4.2.1. Experiment Environment. With respect to the ex-
perimental data used to verify the child’s stress-state iden-
tification model proposed in this study, two types of datasets
were established, as indicated in Table 3.

First, in Dataset A, properties of an input vector consist
of only sound feature values extracted from voice data.
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However, as Dataset B uses both voice and HR data,
properties of an input vector contain both voice feature
values and HR feature values in this dataset.

Publicly available voice data included various sounds
and sound effects based on records having a duration of
approximately 10 s [37]. Data representing the stress state
included crying sounds, and data representing the nonstress
state included laughing sounds, conversation sounds,
screaming sounds, clapping sounds, and noise from daily
activities. With respect to the setting for voice data ex-
traction, a sample extraction rate of 16 kHz was set, and the
size of the window was set as 32ms by referring to existing
studies. To minimize data loss, the window overlapping was
established as 66% [38, 39].

,eHR data of six normal subjects were collected for one
week during which they performed daily activities. Ac-
cordingly, we conducted a survey based on these subjects
and classified the HRs of these subjects in both stress and

nonstress states according to the survey result. ,en, HR
values that are appropriate for each voice based on voice data
collected were compared with HRs of subjects, and were
formed according to expert advice. ,e total number of
input vectors in Dataset A and Dataset B is 992; the number
of input vectors classified to be in the S condition is 250, and
the number of input vectors classified to be in the S con-
dition is 742.

Parameter setting for classification models is as follows.
With respect to the DT model, pruning was adopted to

Public IBinder onBind (Intent intent) {
if (initialize ()) {

// success
} else {

// fail
}

}
return mBinder;

Figure 7: onBind() function.

Public Boolean initialize (){
if (mBluetoothManager == null) {

mBluetoothManager = (Bluetooth Manager)
getSystemService (Context.BLUETOOTH_SERVICE);

if (mBluetoothManager == null) {
return false;

}
}

mBluetoothAdapter =
mBluetoothManager.get.Adapter();

if (mBluetoothAdapter = = null || !mBluetoothAdapter.isEnabled()) {
broadcatUpdate (BLUETOOTH_OFF_STATE);
return false;

} else {
bondedDevice = mBluetoothAdapter.getBondedDevices();

}
mBLEScanner = mBluetoothAdapter.getBluetoothLeScanner();
If (mBLEScanner = = null)

return false;
}

return true;
}

Figure 8: initialize() function.

Public void setFilterDeviceName (String filterDeviceName) {
this.filterDeviceName = filterDeviceName;

// Search for nearby devices
start_Scan();

// Calling an existing pairing check method
getPairedCheck();

}

Figure 9: setFilterDeviceName() function.

Results of stress states over time
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Figure 10: ,e stress-state monitoring application.

Table 3: Dataset description.

Datasets Features
Dataset A Sound features
Dataset B Sound features and heart rate feature
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prevent the spread of unnecessary branches. ,e threshold
for controlling pruning was established as 0.5. With respect
to the SVMmodel, a linear kernel was used, and the value of
λ was set to 1.0.

Both the general accuracy and balanced accuracy were
used as indices for evaluating the performance of the pro-
posed model considering data imbalance. Balanced accuracy
can detect biased classification in an imbalanced dataset. It
becomes algebraically consistent with general accuracy when
a dataset stays in balance [40, 41].

In this study, the general accuracy refers to the ratio of
the amount of data in which the state of a child is correctly
classified according to the total amount of data, as shown in

Accuracy �
TP + TN

TP + FP + FN + TN
. (6)

Here, True Positive (TP) indicates the result in which the
case of a stressed child is correctly classified as the S con-
dition, and True Negative (TN) indicates the result in which
the case of a child who is not stressed is correctly classified as
the S condition. However, False Positive (FP) indicates the
result in which the case of a child who is not stressed is
incorrectly classified as the S condition, and False Negative
(FN) indicates the result in which the case of a stressed child
is incorrectly classified as the S condition.

,e balanced accuracy is calculated using (9) based on the
sensitivity obtained from (7), which refers to the ratio of data
in which the case of a stressed child was practically classified
as the S condition, and the specificity obtained through (8),
which refers to the ratio of data in which a case of a child not
stressed was practically classified as the S condition.

Sensitivity �
TP

TP + FN
, (7)

Specifictiy �
TN

FP + TN
, (8)

BalancedAccuracy �
(Sensitivity + Specifictiy)

2
. (9)

,e ratio of training data to experimental data is 9 :1. In
addition, 10-fold cross-validation was performed to enable
the entire dataset to be used in the experiment.

4.2.2. Experiment Results and Analysis. Table 4 lists the
number of TP, TN, FP, and FN cases used in the accuracy
calculation. It was found that the number of TP cases in
which the case of a stressed child was correctly predicted was
very low under the condition of Dataset A applied. An
analysis revealed that this result was obtained because data
state values were established in a biased manner by assuming
exceptions in the S condition. Such biased data state values
led to data imbalance. In particular, the result of the DT
model under the condition of Dataset A was derived because
of the limitation of this rule-based model. In other words, it
developed branches that are based on a variable that had the
highest value among variables with similar quantity of in-
formation, thereby leading to a limited number of TP cases.

On the contrary, the DT model and the SVM model,
respectively, showed 179 and 188 TP cases under the con-
dition of Dataset B. ,e number of TP cases of these models
under the condition of Dataset B increased significantly
compared to those under the condition of Dataset A. ,is
result indicates that HR data were located at the upper
decision node in the DT model and increased the perfor-
mance of this model, and that the decision boundary of the
SVM model also became more precise because of HR data.
,at is, it was verified that the increased number of TP cases
under the condition of Dataset B affected themodel accuracy
improvement, and that the combined use of voice and HR
data was appropriate for the identification of the stress state
of a child.

Table 5 shows the sensitivity, specificity, general accu-
racy, and balanced accuracy of classification models
according to datasets. ,e experimental result showed that
the mean general accuracy and balanced accuracy of the
three classification models were calculated to be 64.69% and
52.31%, respectively, under the condition when Dataset A
was applied, and 80.58% and 77.98%, respectively, under the
condition when Dataset B was applied.

It was confirmed that the classification models exhibited
a lower balanced accuracy than general accuracy. ,is result
was derived because the balanced accuracy was calculated
based on the sensitivity and specificity and thus facilitated
the detection of errors caused by class imbalance. In ad-
dition, the DT and SVM models exhibited a low balanced
accuracy under the condition when Dataset A was applied.
Given that the sensitivity was close to 0, it was determined
that these models classified most instances as the S

condition.
,e experimental result verified that the classification

models exhibited a better performance when both voice and
HR data were used. Based on this result, it can be inferred
that a supplementary method is needed to identify the stress
state of a child, i.e., one that cannot be determined based on
only voice data. It was also determined that the combination
of voice and HR data overcame the limitation of the use of
only voice data and increased the performance of the de-
veloped model.

,en, improvements of the general accuracy and bal-
anced accuracy of the SVM model, which exhibited the
most excellent performance under the condition of Dataset
B, were confirmed through comparisons with the other
models to compare the performance of the three classifi-
cation models used in this study. ,e accuracy improve-
ment ratio is calculated using (10). Here, AccuracySVM
refers to the general accuracy and balanced accuracy of the
SVM model, and Accuracycomp refers to the general ac-
curacy and balanced accuracy of the model compared with
the SVM model.

Improvements �
AccuracySVM − Accuracycomp

Accuracycomp
. (10)

Under the condition of Dataset B, the general accuracy
of the SVM model increased by 1.39% and 34.38% com-
pared to that of the DT model and the NB model,
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respectively, while the balanced accuracy improved by
2.53% and 23.24%, respectively. As indicated in this result,
the general accuracy of the SVM model was improved
significantly compared to that of the NB model. On the
contrary, that of the SVM model improved only slightly
compared to that of the DTmodel. ,is result was derived
because both DT and SVM models classified the stress
states of children based on high probabilities under the
condition of Dataset B. However, the DT model exhibited
higher performance than the SVM model under the con-
dition of Dataset A. Given this, it is determined that the
combination of voice and HR data enabled the SVM model
to exhibit a better performance than the DTmodel in terms
of general accuracy.

Table 6 and Figure 11 show the improvement rates of
general accuracy and balanced accuracy of the three clas-
sification models under the condition of Dataset A com-
pared to those under the condition of Dataset B.

,e experimental result indicated that the three clas-
sification models exhibited a better performance under the
condition when Dataset B was applied than under the
condition when Dataset A was applied. It was found that
the SVMmodel showed the highest accuracy improvement.
,e general accuracy and balanced accuracy of this model
increased by 48.22% and 99.26%, respectively. In particular,
its balanced accuracy increased significantly. ,is result
implies that the combination of voice and HR data reduced
the error caused by the imbalanced dataset observed in
Dataset A.

However, the general accuracy and balanced accuracy of
the NB model were calculated to be approximately 60%
under the conditions of both datasets, thereby being sig-
nificantly low. ,is result was obtained because the datasets
used in this study contained a lower number of input vectors
than that of properties of input vectors. From the experi-
ment, it was found that most probabilities of each property
of instances were approximated to be zero, and that the
probability of an input vector being included in a condition
through continuous multiplication converged to zero. ,us,
it is determined that the logarithmic transformation method
should be applied to conditional probability equations.

5. Conclusion

A technology must be developed to automatically identify
extreme stress states of children who cannot properly ex-
press their emotions when recognizing dangerous situations,
which threaten the safety of children, in real time.,is study
presented a child’s stress-state identification model based on
biometric data. When a child who cannot easily show his or
her expressions encounters a dangerous situation, such a
situation tends to be revealed after the child was affected by a

Table 5: Classifier performance according to dataset.

Sensitivity Specificity Accuracy Balanced accuracy
Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B Dataset A Dataset B

NB 78.82 73.24 58.32 60.03 60.51 65.88 65.87 68.12
DT 64.38 70.84 95.54 93.18 73.83 87.32 48.93 81.88
SVM 63.53 81.56 74.36 93.92 59.73 88.53 42.13 83.95
Average 68.91 75.21 76.07 82.38 64.69 80.58 52.31 77.98

Table 6: ,e improvement rates of general accuracy and balanced
accuracy according to datasets.

Accuracy Balanced accuracy
NB 8.87 3.42
DT 17.34 67.34
SVM 48.22 99.26

Table 4: Numbers of correct and incorrect classification instances.

Dataset A Dataset B
Naı̈ve Bayes Decision tree Support vector machine Näıve Bayes Decision tree Support vector machine

True Positive (TP) 180 13 8 182 179 188
True Negative (TN) 430 718 595 446 612 615
False Positive (FP) 312 24 147 296 130 127
False Negative (FN) 70 237 242 68 71 62
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Figure 11: ,e improvement rates of general accuracy and bal-
anced accuracy according to datasets.
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risk, thereby increasing relevant problems. In this regard,
this study presented a methodology for identifying the stress
state of a child in real time and recognizing dangerous
situations for the child. Voice data and HR data, which can
represent emotions of children, were used as biometric data,
and a child stress-state identification model based on ma-
chine learning was developed.

In this study, the stress state of a child is classified into
four cases, and we aim to perform the classification using
normalized voice data and heart rate data and to verify the
reliability of the proposed system. ,e NB, DT, and SVM
models, which are commonly used as classification models
for machine-learning-based biosignals analysis, were also
used as classification models in this study. In addition, we
aim to verify the effectiveness of the combination of the two
biosignal datasets through an experiment comparing a
dataset using only voice data and a dataset using both voice
and heart rate data. As a result of the experiment, in the
dataset using both voice data and heart rate data, the results
of accuracy for NB, DT, and SVM models were 65.88%,
87.32%, and 88.53%, respectively, with SVMmodel showing
the best performance. From these results, the proposed
model showed the highest performance when datasets using
both voice and heart rate data were used. Furthermore, this
study presented the framework for collecting biometric data
using a smart band, identifying the stress state of a child
based on the proposed model, and transmitting the state that
is identified to a mobile app in real time. ,ese methods
enable protectors of children to recognize dangerous situ-
ations for children instantly and to respond to these situ-
ations promptly.

,e results of this study show that the child’s stress-state
identification model based on two types of biometric data
and the framework, both of which were developed in this
study, can be practically applied to the detection of dan-
gerous situations for children. It is expected that this model
can also be verified in practical conditions as long as an
experimental environment based on children can be
established through cooperation with their protectors. In
addition, it is necessary to investigate deep learning tech-
niques, such as Convolution Neural Network (CNN), Deep
Belief Network (DBN), and Stacked Autoencoder (SAE),
while obtaining various data with biosignal information
(e.g., brain waves, pulse) and applying big data-based
platform. Moreover, further studies will be conducted to
analyze specific movement patterns of children by installing
additional biometric data sensors, such as accelerometers
and gyroscopes, to detect movements of children and es-
tablish a more precise stress-state identification model.
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